👤


2. Să se determine extremele funcției
[tex]z = {x}^{3} + {y}^{2} - 3x + 2y[/tex]



Răspuns :

Răspuns:

[tex] \frac{\partial z}{\partial x}=3x^2-3=0, \; \frac{\partial z}{\partial y}=2y+2=0[/tex]. Rezulta [tex]x^2=1[/tex] deci [tex]x_1=1,x_2=-1[/tex]. Din 2y+2=0 rezulta y=-1.

Avem doua puncte critice: (1,-1), (-1,-1).

[tex] \frac{\partial^2 z}{\partial x^2}=6x, \frac{\partial^2 z}{\partial xy}=0, \frac{\partial^2 z}{\partial y^2}=2[/tex]

Matricea Hessiana este:

[tex]H_f(x,y)=\begin{pmatrix} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial xy} \\ \frac{\partial^2 z}{\partial xy} &\frac{\partial^2 z}{\partial y^2}\end{pmatrix}=\begin{pmatrix} 6x & 0 \\ 0 & 2 \end{pmatrix} [/tex].

[tex]H_f(1,-1)=\begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix} [/tex].

[tex]\Delta_1=6>0,\;\Delta_2=12>0[/tex] deci (1,-1) este punct de minim local.

[tex]H_f(-1,-1)=\begin{pmatrix} -6 & 0 \\ 0 & 2\end{pmatrix}[/tex].

[tex]\Delta_1=-6<0,\;\Delta_2=-12<0[/tex] deci (-1,-1) nu este punct de extrem.