👤

Va rog frumos,am nevoie de ajutor la aceasta problema,este urgent!!!!!​

Va Rog Frumosam Nevoie De Ajutor La Aceasta Problemaeste Urgent class=

Răspuns :

Răspuns:

Explicație pas cu pas:

E bine cunoscuta una din proprietatile modului |x+y|≤|x|+|y|

Vom aplica inductia matematica

1. pentru n=2, |a1+a2|≤|a1|+|a2| adevarat  (cunoscuta proprietate)

2. Admitem ca este adevarata si pentru n=k, adica

|a1+a2+...+ak|≤|a1|+|a2|+...+|ak|.

3. Sa verificam ca este adevarata si pentru n=k+1, adica

[tex]|a_{1}+a_{2}+...+a_{k}+a_{k+1}|\leq |a_{1}|+|a_{2}|+...+|a_{k}|+|a_{k+1}|,~la~asta~tr.~sa~ajungem...\\|a_{1}+a_{2}+...+a_{k}+a_{k+1}|=|(a_{1}+a_{2}+...+a_{k})+a_{k+1}|\leq |a_{1}+a_{2}+...+a_{k}|+|a_{k+1}|\leq |a_{1}|+|a_{2}|+...+|a_{k}|+|a_{k+1}|,[/tex]

am ajuns la ce speram, deci egalitatea este adevarata pentru orice n≥2.