Răspuns:
Explicație pas cu pas:
2•1 +2•3 +2•5 +2•7 + ... +2 • 2015 +2•2017 +2•2019 =
2•(1 + 3 + 5 + 7 + ....+ 2015 + 2017 + 2019)
________
1 + 3 + 5 + 7 + ....+ 2015 + 2017 + 2019
a1 = 1
an = 2019
r = 2
an = a1 + (n - 1)•r
Sn = n•(a1 + an)/2
2019 = 1 + (n - 1)•2 = 1 + 2•n - 2 = 2•n - 1
2•n = 2019 + 1 = 2020
n = 2020 : 2 = 1010
1 + 3 + 5 + 7 + ....+ 2015 + 2017 + 2019 = 1010•(1 + 2019)/2 = 1010•2020/2 =
1010•1010
____________
16x^2 = 2•1010•1010
x^2 = 2•1010•1010/16 = 2•(1010/4)^2
x1 = 1010√2/4 = 505√2/2
x2 = -505√2/2