Răspuns:
[tex]a=\frac{\frac{1}{33}+\frac{1}{303} +\frac{1}{3003} +\frac{1}{30003} }{\frac{1}{66}+\frac{1}{606} +\frac{1}{6006} +\frac{1}{60006}}[/tex]
[tex]a=\frac{\frac{1}{3}(\frac{1}{11} +\frac{1}{101} +\frac{1}{1001} +\frac{1}{10001}) }{\frac{1}{6}(\frac{1}{11} +\frac{1}{101} +\frac{1}{1001} +\frac{1}{10001})}[/tex]
Se reduc parantezele si obtinem:
[tex]a=\frac{\frac{1}{3}}{\frac{1}{6}}[/tex]
[tex]a=\frac{1}{3}*\frac{6}{1}[/tex]
a=2
Explicație pas cu pas: