👤

comparati numerele a=2³⁵-2³⁴-2³³ b= 3²⁴-3×3²³+3²²

Răspuns :

Răspuns:

Calculam A :

[tex]a = 2 {}^{35} - 2 {}^{34} - 2 {}^{33} [/tex]

[tex]a = (2 {}^{2} - 2 - 1) \times 2 {}^{33} [/tex]

[tex]a = (4 - 2 - 1) \times 2 {}^{33} [/tex]

[tex]a = 1 \times 2 {}^{33} [/tex]

[tex]a = 2 {}^{33} [/tex]

Calculam B :

[tex]b = 3 {}^{24} - 3 \times 3 {}^{23} + 3 {}^{22} [/tex]

[tex]b = 3 {}^{24} - 3 {}^{24} + 3 {}^{22} [/tex]

[tex]b = 3 {}^{22} [/tex]

Le comparam :

[tex]2 {}^{33} < 3 {}^{22} [/tex]

SPER CA TE AM AJUTAT!

Răspuns:

2^33(4-2-1)=2^33 ;   3^24-3^24+3^22=3^22 ;

Explicație pas cu pas:

(2^3)^11<(3^2)^11;  8^11<3^11 ;  a<b