Răspuns:
Explicație pas cu pas:
[tex]\frac{1}{\sqrt{2}+1 }-\frac{1}{\sqrt[3]{2^{2}}+\sqrt[3]{2}+1 }=\frac{\sqrt{2}-1 }{(\sqrt{2}+1)(\sqrt{2}-1)} -\frac{\sqrt[3]{2}-1 }{(\sqrt[3]{2}-1)( \sqrt[3]{2^{2}}+\sqrt[3]{2}+1 )} =\frac{\sqrt{2}-1 }{(\sqrt{2})^{2}-1^{2} }-\frac{\sqrt[3]{2}-1 }{(\sqrt[3]{2})^{3}-1^{3} } =\frac{\sqrt{2}-1 }{2-1}-\frac{\sqrt[3]{2}-1 }{2-1}=\sqrt{2}-1-(\sqrt[3]{2}-1)= \sqrt{2}-1-\sqrt[3]{2}+1= \sqrt{2}-\sqrt[3]{2}[/tex]