Răspuns:
Explicație pas cu pas:
[tex]\lim_{x \to \infty} \frac{x+\sqrt{x} }{3x+2\sqrt{x} +1} = \lim_{x \to \infty} \frac{x*(1+\frac{\sqrt{x}}{x} )}{x*(3+\frac{2\sqrt{x} }{x} +\frac{1}{x} } = \lim_{x \to \infty} \frac{1+\frac{1}{\sqrt{x} } }{3+\frac{2}{\sqrt{x} } +\frac{1}{x} }=\frac{1+0}{3+0+0} =\frac{1}{3}[/tex]