Explicație pas cu pas:
E(x)=1/x(x+1)=(x+1-x)/x(x+1)=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
Deci am ajuns la E(x)=1/x -1/(x+1)
S=E(1)+E(2)+E(3)+.....+E(2019)=>
S=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2019-1/2020)
Scapam de paranteze:
S=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2019-1/2020
Suma noastra este defapt o suma "telescopica" pt ca observam ca seanuleaza termenii din mijloc dar raman capetele
Deci S=1/1-1/2020=>S=2020/2020-1/2020=>S=2019/2020
S€(0,1)=>0<S<1=>0<2019/2020<1=>
0/2020<2019/2020<2020/2020 (A)
Deci S€(0,1)