Răspuns:
Explicație pas cu pas:
a) figura e atasata
m(∡BOC)=3·m(∡AOB), m(∡BOC)=(3/2)·m(∡DOC)
b) Din m(∡BOC)=3·m(∡AOB), |:3 ⇒ m(∡AOB)=(1/3)·m(∡BOC)
c) Din m(∡BOC)=(3/2)·m(∡DOC) |·(2/3), ⇒ m(∡DOC)=(2/3)·m(∡BOC)
Atunci m(∡AOB)+m(∡BOC)+m(∡COD)=180° (formeaza unghi alungit), inlocuind, obtinem: (1/3)·m(∡BOC)+m(∡BOC)+(2/3)·m(∡BOC)=180°.
(1/3)·m(∡BOC)+(2/3)·m(∡BOC)+ m(∡BOC)=180°,
(3/3)·m(∡BOC) + m(∡BOC)=180°, ⇒m(∡BOC)+m(∡BOC)=180°, deci
2·m(∡BOC)=180°, ⇒m(∡BOC)=180°:2=90°.