👤

Arătați că: 111 | (abc+bca+cab), unde a, b, c sunt cifre nenule în baza 10 !!!
Dau coroana primului răspuns corect!!!!!​


Răspuns :

Răspuns:

Explicație pas cu pas:

___   ___    ___

abc + bca + cab =

= ( 100a+10b+c) + (100b+10c+a) +(100c+10a+b) =

= (100a+10a+a) + (100b+10b+b) + (100c+10c+c) =

= 111 a + 111 b + 111 c =

= 111 × ( a + b + c )  → divizibil cu 111;    a, b, c ≠ 0

(abc+bca+cab)=(100a+10b+c)+(100b+10c+a)+(100c+10b+b)=111a+111b+111c=111•(a+b+c) care este div. cu 111 Asa s-ar rezolva daca ,,|" ar fi impartit. :))