Răspuns:
Explicație pas cu pas:
U(a)=U(3²⁰¹²)=U(3⁴ˣ⁵⁰³⁺⁰)=U(3⁰)=1
U(b)=U(2²⁰¹³)=U(2⁴ˣ⁵⁰³⁺¹)=U(2¹)=2
U(c)=U(U(5²⁰¹⁵)+U(6²⁰¹⁴)+U(4²⁰¹³)+U(3²⁰¹²)+U(2²⁰¹¹))=U(5+6+4+1+U(2²⁰⁰⁸⁺³))=
=U(16+U(2³))=U(24)=4
U(d)=???
d=3ⁿ⁺¹·5ⁿ⁺²-15ⁿ-3ⁿ·5ⁿ⁺¹=3·3ⁿ·5ⁿ·25-15ⁿ-3ⁿ·5ⁿ·5=15ⁿ·(3·25-1-5)=15ⁿ·69
deci U(d)=U(15ⁿ·69)=U(U(15ⁿ) · U(69))=U(5·9)=5