Răspuns :
Salut,
Să presupunem că există d un divizor comun 3 + n și 2n + 7,
unde d este diferit de 1.
Deci d | (3 + n), unde | înseamnă divide. Dacă d divide un număr, atunci tot d divide un multiplu al lui, deci d | 2·(3 + n), deci d | (2n + 6) (1).
Dacă d divide simultan 2 numere, atunci d divide și diferența lor. De exemplu d | a și d | b, deci există k₁ și k₂ astfel încât a = k₁·d și b = k₂·d, deci a -- b = d·(k₁ -- k₂), deci d divide și diferența a -- b (2).
Din (1) și (2) rezultă că d divide diferența 2n + 7 -- (2n + 6) = 1, deci d | 1, adică d = 1.
Am ajuns deci la o contradicție cu presupunerea de la început, adică d diferit de 1.
Deci d = 1, adică 3 + m nu se divide cu 2n + 7, adică cele 2 expresii sunt prime între ele, ceea ce trebuia demonstrat.
Simplu, nu ? :-).
Green eyes.
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.