Răspuns :
[tex]\text{Formule:}\\\\ a^{\log_{a}x} = x\\ \log_{a^x}b = \log_{a}b^{\frac{1}{x}}\\ \log_{a}b^x = \log_{a^{\frac{1}{x}}}b\\\\\\\left(2^{\log_{\sqrt[4]{2}}a}-3^{\log_{27}(a^2+1)^3} - 2a\right):\left(7^{4\log_{49}a}-a-1\right) = \\ \\ = \left(2^{\log_{2}a^4}-3^{\log_{3^3}(a^2+1)^3}-2a\right):\left(7^{\log_{7^2}a^{4}}-a-1\right) = \\ \\ =\left(a^4-3^{\log_{3}(a^2+1)}-2a\right):\left(7^{\log_{7}a^2}-a-1\right) = \\ \\ = \left(a^4-(a^2+1)-2a\right):(a^2-a-1)=[/tex]
[tex]= \left(a^4-(a^2+2a+1)\right):\left(a^2-a-1\right) = \\ \\ = \left((a^2)^2-(a+1)^2\right):\left(a^2-a-1\right) =\\ \\ =\left(a^2-(a+1)\right)\left(a^2+a+1\right):\left(a^2-a-1\right) = \\ \\ = \left(a^2-a-1\right)\left(a^2+a+1\right):\left(a^2-a-1\right) =\\ \\ = a^2+a+1\\ \\ \\ \text{Valorile admisibile ale variabilei a sunt:}\\ a\in \mathbb{R}_+^*\,\text{ si }\,a^2-a-1 \neq 0.\\\\\Delta = 1+4 = 5 \Rightarrow a\neq \dfrac{1\pm \sqrt{5}}{2}[/tex]
[tex]\Rightarrow a \in \mathbb{R}_+^*\,\backslash\,\left\{\dfrac{1+ \sqrt{5}}{2}\right\}\quad \text{(valorile admisibile)}[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.