Răspuns:
Explicație pas cu pas:
[tex]\sqrt[4]{3}=\sqrt[4*2*5]{3^{2*5}}=\sqrt[40]{3^{10}},\\ \sqrt{2} =\sqrt[2*4*5]{2^{4*5}}=\sqrt[40]{2^{20}}\\ \sqrt[5]{4}=\sqrt[5*4*2]{4^{4*2}}=\sqrt[40]{4^{8}}=\sqrt[40]{(2^{2})^{8}}=\sqrt[40]{2^{16}} \\3^{10}=(3^{5})^{2}=243^{2}\\2^{20}=(2^{10})^{2}=1024^{2}\\2^{16}=(2^{8})^{2}=256^{2}[/tex]
Acum poti compara....
Succese!