Răspuns:
Explicație pas cu pas:
113.
2^k+1 + 6^k+1 = 2^k+1 + 2^k+1 * 3^k+1 = 2^k+1 (1 + 3^k+1)
3^k+1 + 3^k+2 = 3^k+1 (1 + 3) = 4*3^k+1
2^k/3^k : 2^k+1 (1 + 3^k+1)/4*3^k+1 = 2^k/3^k * 4*3^k+1 / 2^k+1 (1 + 3^k+1) =
2^k+2 * 3^k+1 / 3^k * 2^k+1 *(1 + 3^k+1) = 6/(1 + 3^k+1)
___________________
114.
xy = 32
16x = y^2
x = y^2/16
y^3/16 = 32
y^3 = 16*32 = 2^4 * 2^5 = 2^9 = (2^3)^3 rezulta y = 2^3 = 8
x = y^2/16 = 64/16 = 4