👤

a=[tex]\sqrt{3+2\sqrt{2}[/tex]+[tex]\sqrt{3-2\sqrt{2}[/tex]

Aratati ca [tex]a^{2}[/tex] ∈ N


Răspuns :

Răspuns:

8

Explicație pas cu pas:

Metoda 1 (prin depistarea patratelor perfecte):

[tex]a=\sqrt{3+2\sqrt2}+\sqrt{3-2\sqrt2}\\a=\sqrt{(1+\sqrt2)^2}+\sqrt{(1-\sqrt2)^2}\\a=|1+\sqrt2|+|1-\sqrt2|\\a=1+\sqrt2+\sqrt2-1\\a=2\sqrt2\\a^2=8[/tex]

Metoda 2 (prin calcul direct):

[tex]a=\sqrt{3+2\sqrt2}+\sqrt{3-2\sqrt2}\\a^2=(\sqrt{3+2\sqrt2}+\sqrt{3-2\sqrt2})^2\\a^2=3+2\sqrt2+3-2\sqrt2+2*\sqrt{3+2\sqrt2}*\sqrt{3-2\sqrt2}\\a^2=6+2*\sqrt{(3+2\sqrt2)*(3-2\sqrt2)}\\a^2=6+2*\sqrt{9-8}\\a^2=6+2\\a^2=8[/tex]