👤

rezolvati in multimea numerelor reale ecuatia:radical din x patrat+5=3

Răspuns :

Răspuns:

    [tex]x_{1}[/tex] = 2

    [tex]x_{2}[/tex] = -2

Explicație pas cu pas:

    [tex]\sqrt{x^{2}+5}[/tex] = 3 ║²

    [tex]x^{2} + 5[/tex] = 9

    [tex]x^{2}[/tex] = 9 - 5

    [tex]x^{2}[/tex] = 4

    x = ±[tex]\sqrt{4}[/tex]

    [tex]x_{1}[/tex] = 2

    [tex]x_{2}[/tex] = -2

[tex]\it \sqrt{x^2+5} =3 [/tex]

Notăm expresia (strict pozitivă) de sub radical cu t.

Ecuația devine:

[tex]\it \sqrt{t} =3 \Leftrightarrow (\sqrt{t})^2 =3^2 \Leftrightarrow t=9[/tex]

Revenim asupra notației și obținem :

[tex]\it x^2+5=9 \Leftrightarrow x^2=9-5 \Leftrightarrow x^2=4 \Leftrightarrow\sqrt{x^2} =\sqrt4 \Leftrightarrow\\ \\ \\ \Leftrightarrow |x| =2 \Leftrightarrow x=\pm2 \Leftrightarrow\begin{cases}\it x_1=-2\\ \\ sau\\ \\ \it x_2=2\end{cases}[/tex]