Răspuns:
Explicație pas cu pas:
[tex]2^{6n}(8^{2n+1}+4^{3n+1}-11*64^{n})=2^{6n}((2^{3} )^{2n+1}+(2^{2} )^{3n+1}-11*(2^{6})^{n}=2^{6n}(2^{3(2n+1)}+2^{2(3n+1)}-11*2^{6n})=2^{6n}(2^{6n+3}+2^{6n+2}-11*2^{6n})=2^{6n}( 2^{6n}*2^{3}+2^{6n}*2^{2}-11*2^{6n}) = 2^{6n}*2^{6n}*(2^{3}+2^{2}-11)=2^{6n+6n}*(8+4-11)=2^{12n}*1= 2^{12n}[/tex]