Răspuns :
2sin(a/2)cos(a/2)=3/5
notăm x =cos(a/2)
2*√(1-x^2)* x= 3/5
(1-x^2)*x^2=9/100
y=x^2
y-y^2-9/100=0
100y°2-100y+9=0
y1=[100-√(10000-4*100*9)]/200=1/10
y-2=180/200=9/10
x1=1/√10. x2=-1/√10
X3=3/√10. x-4= -3/√10
cum a/2<pi/2
sunt valabile doar valorile pozitive ( deci 2 valori!)
notăm x =cos(a/2)
2*√(1-x^2)* x= 3/5
(1-x^2)*x^2=9/100
y=x^2
y-y^2-9/100=0
100y°2-100y+9=0
y1=[100-√(10000-4*100*9)]/200=1/10
y-2=180/200=9/10
x1=1/√10. x2=-1/√10
X3=3/√10. x-4= -3/√10
cum a/2<pi/2
sunt valabile doar valorile pozitive ( deci 2 valori!)
[tex]\it a\in\Big(\dfrac{\pi}{2},\ \pi\Big) \Rightarrow \cos a < 0\\ \\ \\ \cos a =-\sqrt{1-sin^2a} =-\sqrt{1-\dfrac{9}{25}}=-\sqrt{\dfrac{16}{25}}=-\dfrac{4}{5}\\ \\ \\ a\in\Big(\dfrac{\pi}{2},\ \pi\Big) \Rightarrow \dfrac{a}{2} \in\Big(0,\ \dfrac{\pi}{2}\Big) \Rightarrow cos\dfrac{a}{2}>0\ \ \ \ \ (*)\\ \\ \\ -\dfrac{4}{5} =\cos a = \cos 2\cdot\dfrac{a}{2} =2cos^2\dfrac{a}{2}-1 \Rightarrow cos^2\dfrac{a}{2}=\dfrac{\dfrac{1}{5}}{2} \Rightarrow cos^2\dfrac{a}{2} =\dfrac{1}{10}\stackrel{(*)}{\Longrightarrow}[/tex]
[tex]\it \Rightarrow cos\dfrac{a}{2} =\dfrac{1}{\sqrt{10}}=\dfrac{\sqrt{10}}{10}[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.