Răspuns :
[tex]l=\lim\limits_{x\to\infty} \dfrac{1+x-xe^{\frac{1}{x}}}{1-e^{\frac{1}{x}}} \\ \\ e^{\frac{1}{x}}=t \Rightarrow \frac{1}{x} = \ln t \Rightarrow x = \dfrac{1}{\ln t} \Rightarrow t\to 1 \\ \\ l = \lim\limits_{t\to 1}\dfrac{1+\dfrac{1}{\ln t}-\dfrac{t}{\ln t}}{1-t}=\lim\limits_{t\to 1}\dfrac{1+\dfrac{1-t}{\ln t}}{1-t} = \\ \\ = \lim\limits_{t\to 1}\dfrac{\ln t - t +1}{\ln t(1-t)} \overset{L'H}{=} \lim\limits_{t\to 1}\dfrac{\frac{1}{t}-1}{\frac{1-t}{t}-\ln t} =[/tex]
[tex]=\lim\limits_{t\to 1}\dfrac{1-t}{1-t-t\ln t} \overset{L'H}{=} \lim\limits_{t\to 1}\dfrac{-1}{-1-\ln t-1} = \dfrac{-1}{-2} = \boxed{\dfrac{1}{2}}[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.