👤

daca se poate, o rezolvare aici va rog..​

Daca Se Poate O Rezolvare Aici Va Rog class=

Răspuns :

Răspuns:

c

Explicație pas cu pas:

[tex]\frac{x}{y} + \frac{y}{x} = 2\Big | \cdot xy \\\\ x^2 + y^2 = 2xy\\\\ x^2 - 2xy + y^2 = 0\\\\ (x-y)^2 = 0\\\\ x-y = 0\\\\ x = y\\\\x+y = 2\\\\ x + x = 2\\\\ 2x = 2\\\\ x = 1\\\\ y = 1[/tex]

[tex]\left \{ {{\frac{x}{y}+\frac{y}{x}=2 } \atop {x+y=2}} \right.\\\\\left \{ {{\frac{x^2+y^2}{x*y}=2 } \atop {x+y=2}} \right. \\\\\left \{ {{\frac{(x+y)^2-2*x*y}{x*y}=2 } \atop {x+y}=2} \right. \\\left \{ {{4-4x*y=0} \atop {x+y=2}} \right. \\\\\left \{ {{x*y=1} \atop {x+y=2}} \right. \\\\\left \{ {{y(2-y)-1=0} \atop {x=2-y}} \right. \\\left \{ {{y^2-2*y+1=0} \atop {x=2-y}} \right. \\\left \{ {{(y-1)^2=0} \atop {x=2-y}} \right. \\\left \{ {{y=1} \atop {x=1}} \right. \\Bafta![/tex]