👤

aratati ca a=2^0+2^1+2^2+2^3+2^4+2^5+...........+2^2019 se divide cu 5.​

Răspuns :

Formulă:

[tex](a+b)^n = M_a+b^n[/tex]

[tex]M_a[/tex] înseamnă multiplu de a.

[tex]a = 2^0+2^1+2^2+...+2^{2019} \\ 2a = \,\,\,\,\,\,\,\,\,\,2^1+2^2+...+2^{2019}+2^{2020} \\----------------- \\ 2a-a = 2^{2020}-2^0 \\ a = 2^{2020}-1 \\a = 4^{1010}-1 \\ a = (5-1)^{1010}-1 \\ a = M_5+(-1)^{1010}-1 \\ a = M_5+1-1 \\ a = M_5 \\ \\ \Rightarrow a \,\, \vdots \,\, 5[/tex]

a=2⁰+2¹+2²+2³+2⁴+2⁵+....+2²⁰¹⁹

a=2⁰+2¹+....+2²⁰¹⁹

2a=2¹+2²+....+2²⁰²⁰

-----------------------------------------(-)

a=2²⁰²⁰-2⁰

a=2²⁰²⁰-1

u(a)=u(2²⁰²⁰)-u(1) => u(2²⁰²⁰)=????

=> 2¹=2×1=2 | 4k=u(..6)

2²=2×2=4 | 4k+1=(..2)

2³=2×2×2=8 | 4k+2=(..4)

2⁴=2×2×2×2=16 | 4k+3=(..6)

6 se repeta

=> u(2²⁰²⁰)=6

deci

u(a)=6-1=5 => u(a)=5 => a ⋮ 5