Ex. 12/ pag. 36
[tex]\displaystyle\bf\\(x,~y,~x)~i.p.~\left(\frac{1}{2},~\frac{1}{3},~\frac{1}{4}\right)\\\\\\x\cdot\frac{1}{2}=y\cdot\frac{1}{3}=z\cdot\frac{1}{4}=k\\\\\\\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\\\\\\x=2k\\y=3k\\z=4k\\\\x+y+z=32\\\\2k+3k+4k=32\\\\9k=32\\\\k=\frac{32}{9}\\\\x=2k=2\cdot\frac{32}{9}=\frac{64}{9}\\\\\\y=3k=3\cdot\frac{32}{9}=\frac{96}{9}=\frac{32}{3}\\\\\\z=4k=4\cdot\frac{32}{9}=\frac{128}{9}[/tex]