Explicație pas cu pas:
A=(AB+CD)*AD/2=(100+60)*40√3/2=160*20√3=3200√3 (m²)
m(<A)=m(<D)=90°
Ducem inaltimea CK
CK⊥AB
AB=AE+EK=DC
AE+EK=60
AB=AE+EK+EK
100=60+EK⇒KB=EK=40(m)
tg(<C/2)=KB/CK
tg(<C/2)=40/40√3=√3/3
arctg√3/3=m(<C)/2⇒m(<C)=2*arctg√3/3⇒m(<C)=2*30°⇒m(<BCD)=60°
m(<E)=m(<B)
In triunghiul CBE;
2*m(<E)+m(<C)=180°
m(<E)=m(<B)=(180°-m(<C)/2⇒m(<E)=m(<B)=(180°-60°)/2=120°/2=60°
m(<E)=m(<C)=m(<B)=60° demonstreaza ca ΔCEB este echilateral
Bafta!