Răspuns :
[tex]\displaystyle \int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\,dx =\int_{0}^{\pi}\dfrac{(0+\pi - x)\sin(0+\pi-x)}{3+\cos^2(0+\pi-x)}\, dx = \\ \\ =\int_{0}^{\pi}\dfrac{(\pi-x)\sin x}{3+\cos^2 x}\, dx = \int_{0}^{\pi}\dfrac{\pi\sin x}{3+\cos^2 x}\, dx -\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx \\ \\ \\ \\ \Rightarrow \int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx+\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx = \int_{0}^{\pi}\dfrac{\pi \sin x}{3+\cos^2 x}\, dx[/tex]
[tex]\displaystyle 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= -\pi\int_{0}^{\pi}\dfrac{(\cos x)'}{\cos^2 x+(\sqrt 3)^2}\, dx\\ \\ \\ 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= -\dfrac{\pi}{\sqrt 3}\arctan\Big(\dfrac{\cos x}{\sqrt 3}\Big)\Big|_{0}^\pi\\ \\ 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx = \dfrac{\pi}{\sqrt 3}\arctan\Big(\dfrac{1}{\sqrt 3}\Big)+\dfrac{\pi}{\sqrt 3}\arctan\Big(\dfrac{1}{\sqrt 3}\Big)[/tex]
[tex]\displaystyle 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= \dfrac{\pi}{\sqrt 3}\cdot \dfrac{\pi}{6}+ \dfrac{\pi}{\sqrt 3}\cdot \dfrac{\pi}{6}\\ \\ 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx = \dfrac{2\pi^2}{6\sqrt 3}\\ \\ \Rightarrow \boxed{\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= \dfrac{\pi^2}{6\sqrt 3}}[/tex]
[tex]\text{M-am folosit de formula lui King:}\\ \\ \displaystyle \int_{a}^bf(x)\, dx = \int_{a}^bf(a+b-x)\, dx[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.