1+X+X²+...+X^1998 = Q(X)•(1+X)+R(X)
R(X) = a
X⁰+X²+X⁴+...+X^1998 +
+X¹+X³+X⁵+...+X^1997 = Q(X)•(1+X)+a
Pentru x = -1
=> 1-1+1-1+...+1-1+1 = 0+a
=> a = 1-1+1-1+...+1-1+1
=> a = 1+1+1+...+1 (de 1998/2+1 = 1000 ori) -
- (1+1+1+...+1) (de (1997+1)/2 = 999 ori)
=> a = 1000 - 999 = 1
=> R(X) = 1