f(x)=ax²+bx+c
A(-2;0) si B(1;6) ∈ Gf
-Δ/4a=6=> maximul 6 are loc pentru x=1
-b/2a=1; b=-2a
f(-2)=0; 4a-2b+c=0
f(1)=6; a+b+c=6 /•2
4a-2b+c=0
2a+2b+2c=12 (+)
6a+3c=12 /:3
2a+c=4 => c=4-2a
a+b+4-2a=6
b-a=2
b=a+2
din b=-2a si b=a+2=> -2a=a+2
-3a=2=> a=-2/3
b=a+2=-2/3 +2
b=4/3
c=4 +4/3
c=16/3
f(x)=-2x²/3+4x/3 +16/3