1•2•3•...•10
=1•2•3•(2^2)•5•(2•3)•7•(2^3)•(3^2)•(2•5)
=2^8 •3^4 •5^2•7
Numarul divizorilor naturali=(8+1)(4+1)(2+1)(1+1)=270
Numarul divizorilor intregi=2•270=540
Obs: a^m •b^n •c^p •d^q; a, b, c, d numere prime
=> nr divizorilor naturali =(m+1)(n+1)(p+1)(q+1)