👤

Demonstrati ca a=2^0+2^1+2^2+2^3+...+2^2019 este divizibil cu 5

Răspuns :

[tex]a = {2}^{0} + {2}^{1} + ... + {2}^{2019} [/tex]

[tex]2a = {2}^{1} + {2}^{2} + ... + {2}^{2020} [/tex]

---------------------------------------------------(--)

[tex]a = {2}^{2020} - {2}^{0} [/tex]

[tex]a = {2}^{2020} - 1 [/tex]

[tex]u(a) = u( {2}^{2020} ) - u(1)[/tex]

[tex]u( {2}^{2020} ) = ?[/tex]

2¹=2. 4k=u(...6).

2²= 4. 4k+1= (...2)

2³=8. 4k+2= (...4)

2⁴=16. 4k+3= (...8)

2020:4= 502 rest 0=> 4k= (...6)

[tex] = > u( {2}^{2020} ) = 6[/tex]

[tex]u(a) = 6 - 1 = 5 [/tex]

u(a)=5 => numarul a se divide cu 5

Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.


Wix Learning: Alte intrebari