Răspuns :
deoarece unghiul B este ascuțit, evident AN este baza mare
ducem înălțimea din C pe AB (CK)
în triunghiul dreptunghic CKB avem unghiul C=30° și știm că Bl (cateta opusă lui!) are lungimea BC/2=3 cm (jumătate din ipotenuza)
concluzie: AK=DC (laturi opuse in dreptunghiul AKCD)=9cm
o paralela la latura unui triunghi, ce trece prin mijlocul uneia dintre celelalte două laturi este linie mijlocie și are lungimea 1/2 din latura cu care este paralelă
mai știm că latura mijlocie a unui trapez este egală cu 1/2(B+b) semisuma bazelor
cu acestea observăm că dacă notăm linia mijlocie a trapezului cu EF(E aparține lui AD și F lui BC), avem EP linie mijlocie. în triunghiul ACD EP=CD/2
FQ l.m. in BCD. FQ=CD/2
dar EF=(12+9)/2=21/2
PQ=21/2-9/2-9/2=3/2 cm
din construcție avem AE=AB (simetrie!)
în triunghiul MEB a emis deci MA mediană, dar și înălțime. Deci triunghiul este isoscel cu MB=ME (se dem. foarte ușor prin congruență triunghiurilor dreptunghice MAE și MAB, unde MA latura comuna și AE=AB)
dar MEB este isoscel și are un unghi de 60, deci este echilateral, cu latura l=EB= 24 cm
perimetrul lui P=3*24 cm
ducem înălțimea din C pe AB (CK)
în triunghiul dreptunghic CKB avem unghiul C=30° și știm că Bl (cateta opusă lui!) are lungimea BC/2=3 cm (jumătate din ipotenuza)
concluzie: AK=DC (laturi opuse in dreptunghiul AKCD)=9cm
o paralela la latura unui triunghi, ce trece prin mijlocul uneia dintre celelalte două laturi este linie mijlocie și are lungimea 1/2 din latura cu care este paralelă
mai știm că latura mijlocie a unui trapez este egală cu 1/2(B+b) semisuma bazelor
cu acestea observăm că dacă notăm linia mijlocie a trapezului cu EF(E aparține lui AD și F lui BC), avem EP linie mijlocie. în triunghiul ACD EP=CD/2
FQ l.m. in BCD. FQ=CD/2
dar EF=(12+9)/2=21/2
PQ=21/2-9/2-9/2=3/2 cm
din construcție avem AE=AB (simetrie!)
în triunghiul MEB a emis deci MA mediană, dar și înălțime. Deci triunghiul este isoscel cu MB=ME (se dem. foarte ușor prin congruență triunghiurilor dreptunghice MAE și MAB, unde MA latura comuna și AE=AB)
dar MEB este isoscel și are un unghi de 60, deci este echilateral, cu latura l=EB= 24 cm
perimetrul lui P=3*24 cm
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.