Răspuns :
a)
[tex]\displaystyle f(x)=\frac{x^2+ax}{x+2}\\C.E.\; x+2\neq0\Rightarrow x\neq-2\Rightarrow D=\mathbb{R}\backslash\{-2\}\\\\y=x+1\text{ asimptot\u a oblic\u a}\Rightarrow\displaystyle\left \{ {{\lim\limits_{x\rightarrow\infty}\displaystyle\frac{f(x)}{x}=1} \atop {\lim\limits_{x\rightarrow\infty}\displaystyle\left[f(x)-x\right]=1}} \right.[/tex]
[tex]\displaystyle\lim\limits_{x\rightarrow\infty}\frac{f(x)}{x}=\lim\limits_{x\rightarow\infty}\frac{\frac{x^2+ax}{x+2}}{x}=\lim\limits_{x\rightarrow\infty}\frac{x^2+ax}{x^2+2x}\overset{\frac{\infty}{\infty}}{=}\lim\limits_{x\rightarrow\infty}\frac{x^2(1+\frac{a}{x})}{x^2(1+\frac2x)}=1\\\\\lim\limits_{x\rightarrow\infty}[f(x)-x]=\lim\limits_{x\rightarrow\infty}\left(\frac{x^2+ax}{x+2}-x\right)=\lim\limits_{x\rightarrow\infty}\frac{x^2+ax-x(x+2)}{x+2}=\lim\limits_{x\rightarrow\infty}\frac{ax-2x}{x+2}[/tex][tex]\displaystyle\overset{\frac\infty\infty}{=}\lim\limits_{x\rightarrow\infty}\frac{x(a-2)}{x(1-\frac2x)}=a-2=1\Rightarrow a=3[/tex]
b)
[tex]\displaystyle f(x)=\frac{ax^2+b+1}{2x+3}\\C.E.\;2x+3\neq0\Rightarrow x\neq\displaystyle-\frac32\Rightarrow D=\mathbb{R}\backslash\left\{-\frac32\right\}\\y=2x-3\text{ asimptot\u a oblic\u a}\Rightarrow \left \{ {{\lim\limits_{x\rightarrow\infty}\displaystyle\frac{f(x)}{x}=2} \atop {\lim\limits_{x\rightarrow\infty}[f(x)-2x]=-3}} \right.[/tex]
[tex]\displaystyle\lim\limits_{x\rightarrow\infty}\frac{f(x)}{x}=\lim\limits_{x\rightarrow\infty}\frac{ax^2+bx+1}{x(2x+3)}\overset{\frac\infty\infty}{=}\lim\limits_{x\rightarrow\infty}\frac{x^2(a+\frac{b}{x}+\frac1{x^2})}{x^2(2+\frac3x)}=\frac{a}{2}=2\Rightarrow a=4[/tex]
[tex]\displaystyle\lim\limits_{x\rightarrow\infty}[f(x)-2x]=\lim\limits_{x\rightarrow\infty}\left(\frac{4x^2+bx+1}{2x+3}-2x\right)=\lim\limits_{x\rightarrow\infty}\frac{4x^2+bx+1-2x(2x+3)}{2x+3}=\lim\limits_{x\rightarrow\infty}\frac{bx-6x+1}{2x+3}\overset{\frac\infty\infty}{=}\lim\limits_{x\rightarrow\infty}\frac{x(b-6+\frac1x)}{x(2+\frac3x)}=\frac{b-6}{2}=-3\Rightarrow b-6=-3\Rightarrow b=0[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.