Răspuns :
Răspuns:
Explicație pas cu pas:
a)
A=(AB+CD)×AD/2=(100+60)×20√3/2=160×10√3=1600√3
A=1600√3m²
b)
Aria ΔBCE=Atr.
Stim ca Atr=A/2
Cum perpendiculara din C pe BE (s-o notam cu CM) este egala cu AD, CM=AD obtinem ca Atr=BE×CM/2=BE×AD/2
Deci BE×AD/2=A/2⇒BE×AD=A ⇒BE=A/AD
BE=1600√3/20√3=80.
BE=80m
Observam ca BM=AB-CD=100-60=40
BM=40m.
Atunci EM=BE-BM=80-40=40m.
In ΔCEM dreptunghic in M,
CE²=CM²+EM²=(20√3)²+40²=1200+1600=2800
CE²=28×100=4×7×100
CE=20√7
c)
Aria ΔABD=Atr1=AB×AD/2=100×20√3/2=2000√3/2=1000√3
Aria ΔDCB=Atr2=A-Atr1=1600√3-1000√3=600√3
Atr2=600√3m²
A.............100%
Atr2............x%
x%=Atr2×100/A
x%=600√3×100/1600√3=600/16=75/2=37,5
x%=37,5%
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.