Răspuns:
f(x) = ax +b, f(x+1) = f²(1) + [(2x+1)/4]
f(x+1) = a(x+1) + b
f(x+1) = f²(1) + [(2x+1)/4] =>
a(x+1) + b = f²(1) + [(2x+1)/4]
dar f(1) = a*1+b => f²(1) = (a+b)² =>
a(x+1) + b = (a+b)² + [(2x+1)/4]
ax + a - (a+b)² = 2x/4 + 1/4 <=>
a = 2/4 si a - (a+b)² = 1/4 =>
a = 1/2 si 1/2 - (1/2 +b)² = 1/4 =>
(1/2 +b)² = 1/2 - 1/4
1/4 + b + b² = 1/4
b²+b = 0
b(b+1) = 0 => b1 = 0 , b2 = -1, daca b≠0 ramane b = -1
a = 1/2 , b = -1
f(x) = x/2 -1