Răspuns :
[tex]\displaystyle\\\text{Pentru rezolvarea problemei vom simplifica {\underline{\bf fortat cu b}} fractia: } \frac{2a-b}{4b-a}\\\\\\\frac{2a-b^{\b(\b b}}{4b-a~~}=\frac{\dfrac{2a-b}{b} }{\dfrac{4b-a}{b}}=\frac{\dfrac{2a}{b}-\dfrac{-b}{b} }{\dfrac{4b}{b}-\dfrac{-a}{b}}=\boxed{\frac{2\times\dfrac{a}{b}+1}{4+\dfrac{a}{b}}}[/tex]
[tex]\displaystyle\\1)~~\frac{a}{b}=\frac{2}{5}\\\\\\\implies\frac{2\times\dfrac{a}{b}+1}{4+\dfrac{a}{b}}=\frac{2\times\dfrac{2}{5}+1}{4+\dfrac{2}{5}}=\frac{\dfrac{4}{5}+\dfrac{5}{5} }{\dfrac{20}{5}+\dfrac{2}{5}} =\frac{\dfrac{9}{5}}{\dfrac{22}{5}}=\boxed{\frac{9}{22}}[/tex]
[tex]\displaystyle\\2)~~\frac{a}{b}=1,2=\frac{12}{10}=\frac{6}{5}\\\\\\\implies\frac{2\times\dfrac{a}{b}+1}{4+\dfrac{a}{b}}=\frac{2\times\dfrac{6}{5}+1}{4+\dfrac{6}{5}}=\frac{2\times\dfrac{6}{5}+1}{4+\dfrac{6}{5}}=\frac{\dfrac{12}{5}+\dfrac{5}{5}}{\dfrac{20}{5}+\dfrac{6}{5}} =\frac{\dfrac{17}{5}}{\dfrac{26}{5}}=\boxed{\frac{17}{5}}[/tex]
[tex]\displaystyle\\3)~~\frac{a}{b}=2,(2)=\frac{22-2}{9}=\frac{20}{9}\\\\\\\implies\frac{2\times\dfrac{a}{b}+1}{4+\dfrac{a}{b}}=\frac{2\times\dfrac{20}{9}+1}{4+\dfrac{20}{9}}=\frac{\dfrac{40}{9}+\dfrac{9}{9}}{\dfrac{36}{9}+\dfrac{20}{9}} =\frac{\dfrac{49}{9}}{\dfrac{56}{9}}=\frac{49}{56}=\boxed{\frac{7}{8}}[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.