👤

Se considera functia f:R-R, f(x)=x+3. Sa se calculeze f(2)+f(2^2)+...+f(2^10)

Răspuns :

f:R->R, f(x)=x+3

f(2)+f(2^2)+...+f(2^10)=

=(2+3)+(2^2 +3) + (2^3 +3) +…..+(2^10 +3)

=10•3+(2+2^2+2^3+…+2^10)

=30+2^11-2

=28+2048

=2076



Răspuns:

vom folosi suma consacrata

1+a+a²+a³+...a^n= [a^(n+1)-1]/a-1

Explicație pas cu pas:

f(2)= 2+3

f(2²)=2²+3

f(2³)=2³+3

..

f(2^10)=2^10+3

suma lor S=(2+2²+2³+....+2^10)+10*3=(1+2+...2^10)-1+30=[2^11-1]/1+29=28+2^11