Răspuns
Explicație pas cu pas:
a) se demonstreaza prin calcul direct
b) Pentru a=1 si b=0(evident a,b ∈ R) obtinem ca I₂ ∈ M .
c)Pentru a nu crea confuzii,voi renota A,B cu X,Y .
Fie X=x₁· I₂ + y₁· A si Y=x₂· I₂+y₂·A ,x₁,x₂,y₁,y₂∈R
Atunci X·Y= (x₁· I₂ + y₁· A)(x₂· I₂+y₂·A)=x₁·x₂·I₂+x₁·y₂·A+x₂·y₁·A+y₁·y₂·A²= x₁·x·I₂+(x₁·y₂+x₂·y₁)·A
x₁·x₂ si x₁·y₂+x₂·y₁ ∈ R,deci X· Y∈R