Răspuns :
Răspuns
Explicație pas cu pas:
a + b = 12
ab = 24
(a + b)^2 = a^2 + 2ab + b^2
a^2 + b^2 = (a + b)^2 - 2ab = 144 - 48 = 96
____
( a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2 = a^3 + b^3 + 3ab (a + b)
a^3 + b^3 = ( a + b)^3 - 3ab (a + b) = 12^3 + 3*24*12 = 2592
_____
(a^2 + b^2)^2 = a^4 + b^4 + 2a^2b^2 = a^4 + b^4 + 2(ab)^2
a^4 + b^4 = (a^2 + b^2)^2 - 2(ab)^2 = 96^2 - 2*24^2 = 8064
______
(a^3 + b^3)^2 = a^6 + b^6 + 2(ab)^3
a^6 + b^6 = (a^3 + b^3)^2 - 2(ab)^3 = 2592^2 - 2*24^3 = 6690816
__________
a + b = 12
ab = 24
(a + b)/ab = 12/24
1/b + 1/a = 1/2
_________
(1/a + 1/b)^2 = 1/a^2 + 1/b^2 + 2/ab
1/a^2 + 1/b^2 = (1/a + 1/b)^2 - 2/ab = 1/4 - 2/24 = 1/4 - 1/12 = 3/12 - 1/12 = 2/12 = 1/6
_________
(1/a^2 + 1/b^2)^2 = 1/a^4 + 1/b^4 + 2/(ab)^2
1/a^4 + 1/b^4 = (1/a^2 + 1/b^2)^2 - 2/(ab)^2 = 1/36 - 2/24^2 = 1/36 - 1/576 = 16/576 - 1/576 = 15/576 = 5/192
_________
(1/a + 1/b)^3 = 1/a^3 + 1/b^3 + 3/a^2b + 3/ab^2
3/a^2b + 3/ab^2 = 3b/a^2b^2 + 3a/a^2b^2 = 3(a + b)/(ab)^2
1/a^3 + 1/b^3 = (1/a + 1/b)^3 - 3(a + b)/(ab)^2 = 1/8 -36/24^2 = 1/8 - 36/576 = 72/576 - 36/576 = 36/576 = 9/144 = 1/16
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.