Răspuns :
[tex]\displaystyle\\ \frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2015\times2016}\\\\\text{Folosim formula }~\frac{1}{n\times(n+1)}=\frac{1}{n}-\frac{1}{n+1}\\\\\\ \frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2015\times2016}=\\\\=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}=[/tex]
[tex]\displaystyle\\ \text{Reducem termenii asemenea.}\\\\=\frac{1}{2}-\frac{1}{2016}=\frac{1008}{2016}-\frac{1}{2016}=\frac{1008-1}{2016}= \frac{1007}{2016}\\\\\\\frac{1007}{2016}<\frac{1008}{2016}=\frac{1}{2}\\\\\implies~~\frac{1007}{2016}<\frac{1}{2}\\\\\implies~~\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2015\times2016}<\frac{1}{2}[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.