👤

4. Se considera functia f:IR ->IR, f(x) = x²-4x-m, unde m este numar real. Determinaţi valorile reale ale lui m pentru care f(x) >1; pentru orice număr real x.



DAU COROANA REPEDEE!!!


Răspuns :

Răspuns:

Explicație pas cu pas:

Vezi imaginea AUGUSTINDEVIAN

Răspuns:

f(x)-1>0

x^2-4x-(m+1) notam functia g

a=1,b=-4,c=-(m+1)

coef ec.de grad 2

g este >0 oricare ar fi x pt.delta <0

adică ate semnul lui a,pozitiv

delta=b^2-4ac=16+4(m+1)<0

impartim ec.cu 4

4+(m+1)<0

m+1<-4

m<-5

m aparține int.(- infinit,-5)