👤

Trigonometrie Clasa a IX-a

Trigonometrie Clasa A IXa class=

Răspuns :

Rezolvare:

Utilizăm formulele de calcul prescurtat:

[tex](a + b)^2 = a^2 +2ab + b^2 \Rightarrow a^2 + b^2 = (a + b)^2 - 2ab\\[/tex]

[tex]\sin^{4} t + \cos^{4} t - 1 = (\sin^{2} t)^2 + (\cos^{2} t)^2 - 1 = \\[/tex]

Utilizăm identitatea:

[tex]\boxed{\boldsymbol{ \sin^{2} \alpha + \cos^{2} \alpha = 1 }}[/tex]

[tex]= \big(\underbrace{\sin^{2} t + \cos^{2} t}_{1}\big)^2 - 2\sin^{2} t \cos^{2} t \\[/tex]

[tex]= 1 - 2\sin^{2} t \cos^{2} t + 1 = - 2\sin^{2} t \cos^{2} t[/tex]

Utilizăm formulele de calcul prescurtat:

[tex]a^3 + b^3 = (a + b)^{3} - 3ab(a + b)[/tex]

[tex]\sin^{6} t + \cos^{6} t - 1 = (\sin^{2} t)^3 + (\cos^{2} t)^3 - 1 =\\[/tex]

[tex]= \big(\underbrace{\sin^{2} t + \cos^{2} t}_{1}\big)^3 - 3\sin^{2} t \cos^{2} t \big(\underbrace{\sin^{2} t + \cos^{2} t}_{1}\big) \\[/tex]

[tex]= 1 - 3\sin^{2} t \cos^{2} t + 1 = - 3\sin^{2} t \cos^{2} t\\[/tex]

Egalitatea devine:

[tex]\dfrac{\sin^{4} t + \cos^{4} t - 1}{\sin^{6} t + \cos^{6} t - 1} = \dfrac{- 2\sin^{2} t \cos^{2} t}{- 3\sin^{2} t \cos^{2} t} =\bf \dfrac{2}{3}\\[/tex]

q.e.d.

O temă similară https://brainly.ro/tema/11058857

(sin⁴t+cos⁴t-1)/(sin⁶t+cos⁶t-1)=2/3

1) sin⁴t+cos⁴t-1=sin⁴t+cos⁴t-(sin²t+cos²t)=

sin²t(sin²t-1)+cos²t(cos²t-1)=

sin²t(-cos²t)+cos²t(-sin²t)=

-2sin²t×cos²t. (1)

2) sin⁶t+cos⁶t-1=(sin²t)³+(cos²t)³-1=

(sin²t+cos²t)(sin⁴t-sin²t×cos²t+cos⁴t)-1=

(sin⁴t+cos⁴t)-sin²t×cos²t=

dar din (1) știm sin⁴t+cos⁴t=1-2sin²t×cos²t

=> (1-2sin²t×cos²t)-sin²t×cos²t-1=

-3sin²t×cos²t. (2)

(sin⁴t+cos⁴t-1)/(sin⁶t+cos⁶t-1)=

(-2sin²t×cos²t)/(-3sin²t×cos²t)=2/3

[tex].[/tex]