👤

. 2. Dimensiunile unui paralelipiped dreptunghic sunt exprimate prin numere naturale. Dacă volumul paralelipipedului dreptunghic este egal cu 165 m³, atunci suma tuturor muchiilor acestuia este egală cu: ​

Răspuns :

Răspuns:

[tex]\boldsymbol {\red{76 \ m}}[/tex]

Explicație pas cu pas:

Volumul paralelipipedului:

[tex]\boldsymbol {\blue{V = L \cdot \ell \cdot h}}[/tex]

Descompunem în factori primi:

165 = 3×5×11

Lungimile muchiilor: 3 m, 5 m, 11 m

Un paralelipiped are 12 muchii, câte 4 din fiecare dimensiune.

Suma muchiilor:

S = 4(3+5+11) = 4×19 = 76 m

******

Mai există soluții, deoarece nu s-a pus condiția ca numerele să fie prime sau mai mari decât 1. Considerăm că este posibil ca o muchie să fie egală cu 1 m și atunci mai sunt cazurile 1×3×55=165 sau 1×5×33 = 165 sau 1×11×15 = 165 sau 1×1×165 = 165