Răspuns :
Cercul conține triunghiul, adică cercul este circumscris triunghiului. Raza cercului circumscris unui triunghi echilateral în funcție de latura l a triunghiului este:
[tex]r=\dfrac{l\sqrt{3}}{3}=5 \Rightarrow l\sqrt{3}=15 \\ \Rightarrow l=\dfrac{15}{\sqrt{3}}=\dfrac{15\sqrt{3}}{3}=5\sqrt{3} \ cm[/tex]
Înălțimea triunghiului echilateral este
[tex]h=\dfrac{l\sqrt{3}}{2}=\dfrac{5\sqrt{3} \cdot \sqrt{3}}{2}\tt =\dfrac{15}{2}=7,5 \ cm[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.