👤

In triunghiul ABC, D ∈ (AB), E ∈ (AC). Stabiliti daca DE ∥ BC in fiecare dintre situatiile:
a. AD=6cm, AE=3cm, DB=0,8dm=8cm, EC=40mm=4cm
b. \frac{AD}{BD} = \frac{3}{5} , AE=6cm, EC=4cm
c. DB=30% AB, EC=\frac{1}{3} AC[tex]


Răspuns :

Răspuns:

[tex]\boldsymbol{ \red{ (a) \ DE \parallel BC}}[/tex]

[tex]\boldsymbol{ \red{(b) \ DE \not\parallel BC}}[/tex]

[tex]\boldsymbol{ \red{ (c) \ DE \not\parallel BC}}[/tex]

Explicație pas cu pas:

[tex]a) \ \dfrac{AD}{DB} = \dfrac{6}{8}^{(2} = \dfrac{3}{4}[/tex]

[tex]\dfrac{AE}{EC} = \dfrac{3}{4}[/tex]

Așadar:

[tex]\dfrac{AD}{DB} = \dfrac{AE}{EC} \implies DE \parallel BC[/tex]

[tex]b) \ \dfrac{AD}{BD} = \dfrac{AD}{DB} = \dfrac{3}{5}[/tex]

[tex]\dfrac{AE}{EC} = \dfrac{6}{4}^{(2} = \dfrac{3}{2}[/tex]

Așadar:

[tex]\dfrac{3}{5} \neq \dfrac{3}{2} \Rightarrow \dfrac{AD}{DB} \neq \dfrac{AE}{EC} \Rightarrow DE \not\parallel BC[/tex]

[tex]c) \ DB = 30\% AB \Rightarrow DB = \dfrac{30}{100} \cdot AB \Rightarrow \dfrac{DB}{AB} = \dfrac{3}{10}[/tex]

[tex]EC = \dfrac{1}{3} AC \Rightarrow \dfrac{EC}{AC} = \dfrac{1}{3}[/tex]

Așadar:

[tex]\dfrac{3}{10} \neq \dfrac{1}{3} \Rightarrow \dfrac{DB}{AB} \neq \dfrac{EC}{AC} \Rightarrow DE \not\parallel BC[/tex]