Răspuns :
Răspuns:
[tex]\boldsymbol{ \red{E(x)= \dfrac{x+1}{x-1} }}[/tex]
Explicație pas cu pas:
[tex]E(x) = \bigg(\dfrac{x}{x-1} + \dfrac{x-1}{x} - 1\bigg) \cdot \dfrac{x^3 + x^2}{x^3 - x^2 + x} \\[/tex]
- în paranteză aducem la același numitor, simplificăm fracția din dreapta cu x
[tex]E(x) = \bigg(\dfrac{^{x)} x}{x-1} + \dfrac{^{x-1)} x-1}{x} - ^{x(x-1)} 1\bigg) \cdot \dfrac{x^2\cdot(x+1)}{x\cdot(x^2 - x + 1)} ^{(x} \\[/tex]
- simplificăm pe diagonală cu x
[tex]= \dfrac{x^2+(x-1)^2-x(x-1)}{x(x-1)} \cdot \dfrac{x(x+1)}{x^2 - x + 1}^{(x} \\[/tex]
[tex]= \dfrac{x^2+x^2-2x+1-x^2+x}{x-1} \cdot \dfrac{x+1}{x^2 - x + 1} \\[/tex]
- simplificăm cu (x² - x + 1)
[tex]= \dfrac{x^2-x+1}{x-1} \cdot \dfrac{x+1}{x^2 - x + 1} = \dfrac{x+1}{x-1}[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.