Răspuns :
ΔABC dreptunghic, ∡A=90°, M mijlocul BC, AM = 3 cm, ∡C = 30°, MN⊥BC, N∈AC
______
AM este mediană ⇒ cf. T. medianei AM≡BM≡CM
⇒ BM = CM = 3 cm
ΔBMN ≡ ΔCMN (cazul C.C.) ⇒ ∡MCN≡∡MBN
⇒ ∡MBN=30°
În ΔMBN aplicăm formula trigonometrică:
[tex]tg \ \widehat{MBN} = \dfrac{MN}{BM} \Rightarrow MN = 3 \cdot tg 30^{\circ} = 3 \cdot \dfrac{\sqrt{3} }{3} = \sqrt{3}[/tex]
[tex]\Rightarrow \boldsymbol{MN = \sqrt{3} \ cm}[/tex]
______
✍ Teorema medianei: În orice triunghi dreptunghic, mediana corespunzătoare ipotenuzei (mediana dusă din vârful unghiului drept) are lungimea egală cu jumătate din lungimea ipotenuzei.
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de sprijin, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite pentru acces rapid.